Polysensory interneuronal projections to foot contractile pedal neurons in Hermissenda.

نویسندگان

  • Terry Crow
  • Lian-Ming Tian
چکیده

A Pavlovian-conditioning procedure may produce modifications in multiple behavioral responses. As an example, conditioning may result in the elicitation of a specific somatomotor conditioned response (CR) and, in addition, other motor and visceral CRs. In the mollusk Hermissenda conditioning produces two conditioned responses: foot-shortening and decreased locomotion. The neural circuitry supporting ciliary locomotion is well characterized, although the neural circuit underlying foot-shortening is poorly understood. Here we describe efferent neurons in the pedal ganglion that produce contraction or extension of specific regions of the foot in semi-intact preparations. Synaptic connections between polysensory type Ib and type Is interneurons and identified foot contractile efferent neurons were examined. Type Ib and type Is interneurons receive synaptic input from the visual, graviceptive, and somatosensory systems. Depolarization of type Ib interneurons evoked spikes in identified tail and lateral foot contractile efferent neurons. Mechanical displacement of the statocyst evoked complex excitatory postsynaptic potentials (EPSPs) and spikes recorded from type Ib and type Is interneurons and complex EPSPs and spikes in identified foot contractile efferent neurons. Depolarization of type Ib interneurons in semi-intact preparations produced contraction and shortening along the rostrocaudal axis of the foot. Depolarization of Is interneurons in semi-intact preparations produced contraction of the anterior region of the foot. Taken collectively, the results suggest that type Ib and type Is polysensory interneurons may contribute to the neural circuit underlying the foot-shortening CR in Hermissenda.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serotonin-immunoreactive CPT interneurons in Hermissenda: identification of sensory input and motor projections.

Serotonin immunoreactive (5-HT-IR) neurons identified as cerebropleural ganglion triplets (CPTs) in Hermissenda may be homologues of 5-HT-IR neurons identified in other opisthobranch molluscs. In studies of isolated nervous systems and semi-intact preparations we used a combination of immunohistochemical techniques and fluorescent labeling with Lucifer yellow to identify 5-HT-IR CPT neurons aft...

متن کامل

Statocyst hair cell activation of identified interneurons and foot contraction motor neurons in Hermissenda.

Pavlovian conditioning of Hermissenda produces both light-elicited inhibition of normal positive phototactic behavior and conditioned stimulus (CS)-elicited foot-shortening. Rotation, the unconditioned stimulus (US) elicits foot-shortening and reduced forward ciliary locomotion. The neural circuit supporting ciliary locomotion and its modulation by light is known in some detail. However, the ne...

متن کامل

Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.

The synaptic interactions between photoreceptors in the eye and second-order neurons in the optic ganglion of the nudibranch mollusk Hermissenda are well characterized. However, the higher-order neural circuitry of the visual system, consisting of cerebropleural interneurons that receive synaptic input from photoreceptors and project to pedal motor neurons that mediate visually guided behaviors...

متن کامل

Sensory regulation of network components underlying ciliary locomotion in Hermissenda.

Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (...

متن کامل

Neurochemical and Neuroanatomical Identification of Central Pattern Generator Neuron Homologues in Nudipleura Molluscs

Certain invertebrate neurons can be identified by their behavioral functions. However, evolutionary divergence can cause some species to not display particular behaviors, thereby making it impossible to use physiological characteristics related to those behaviors for identifying homologous neurons across species. Therefore, to understand the neural basis of species-specific behavior, it is nece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 2  شماره 

صفحات  -

تاریخ انتشار 2009